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1. Introduction 

The qutrit (three internal states) comes next in complexity after qubit (two internal 
states) as a resource for quantum information processes like quantum sensing.1 The 
qubit density matrix is of order 2 and it depends on three parameters for the most 
general mixed states, but only on two parameters for pure states. It can be easily 
visualized using Bloch sphere representation in which the pure states are 
represented by points on the Bloch sphere. On the other hand, the qutrit density 
matrix is of order 3 and it depends on eight parameters in the most general case. 
Visualization of the 8-D qutrit state space is practically impossible using the 8-D 
vectors commonly used in the Gell-Mann representation.2 Recently, another 3-D 
representation of the qutrit state space was proposed based on density matrix 
invariants (called invariant vector representation [IVR]).3 These vectors also reside 
on the surface of a sphere and help one visualize the dynamics of a qutrit state. In 
this report, we apply IVR to the cascade configuration of a qutrit (also known as 
the Ξ−model2,4) and show its utility in understanding the dynamics of the model.  

2. Invariant Vector Representation (IVR) of a Qutrit: Basic 
Results 

The density matrix 𝜌𝜌 based on the spin-1 representation of a qutrit is given as5,6  

 𝜌𝜌 =

⎣
⎢
⎢
⎢
⎡ 𝜔𝜔1

1
2

(𝑞𝑞3 + 𝑖𝑖𝑎𝑎3) 1
2

(𝑞𝑞2 − 𝑖𝑖𝑎𝑎2)
1
2

(𝑞𝑞3 − 𝑖𝑖𝑎𝑎3) 𝜔𝜔2 − 1
2

(𝑞𝑞1 + 𝑖𝑖𝑎𝑎1)
1
2

(𝑞𝑞2 + 𝑖𝑖𝑎𝑎2) − 1
2

(𝑞𝑞1 − 𝑖𝑖𝑎𝑎1) 𝜔𝜔3 ⎦
⎥
⎥
⎥
⎤
 . (1) 

The parameters of 𝜌𝜌 are related to the expectation values of expressions involving 
spin-1 components and their combinations. 

 𝜔𝜔𝑖𝑖 =< 𝑆𝑆𝑖𝑖2 >= 𝑇𝑇𝑇𝑇(𝜌𝜌𝑆𝑆𝑖𝑖2) , (2a) 

 𝑎𝑎𝑖𝑖 =< 𝑆𝑆𝑖𝑖 >= 𝑇𝑇𝑇𝑇(𝜌𝜌𝑆𝑆𝑖𝑖) , (2b) 

 𝑞𝑞𝑘𝑘 =< 𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 + 𝑆𝑆𝑗𝑗𝑆𝑆𝑖𝑖 >= 𝑇𝑇𝑇𝑇�𝜌𝜌(𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 + 𝑆𝑆𝑗𝑗𝑆𝑆𝑖𝑖)�,𝑘𝑘 ≠ 𝑖𝑖, 𝑗𝑗  . (2c) 

The invariant 3-D vectors are given by the following relations.5 

First invariant vector: 

 𝑤𝑤��⃗ = �√𝜔𝜔1, √𝜔𝜔2, �𝜔𝜔3� . (3a) 
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Based on the trace relation, 

 𝑇𝑇𝑇𝑇(𝜌𝜌Ξ) = 𝜔𝜔1 + 𝜔𝜔2 + 𝜔𝜔3 = 1 , ∑ 𝑤𝑤𝑖𝑖
2 = 13

𝑖𝑖=1  . (3b) 

Second invariant vector: 

𝑢𝑢�⃗ = ��𝜔𝜔12 + (𝑞𝑞12 + 𝑎𝑎12)/2, �𝜔𝜔22 + (𝑞𝑞22 + 𝑎𝑎22)/2, �𝜔𝜔32 + (𝑞𝑞32 + 𝑎𝑎32)/2� . (4a) 

Based on the trace relation, 

 𝑇𝑇𝑇𝑇(𝜌𝜌Ξ2) = ∑ 𝑢𝑢𝑖𝑖2 ≤ 13
𝑖𝑖=1  . (4b) 

Third invariant vector: 

�⃗�𝑣 = ��𝑋𝑋 + 3(𝑞𝑞12 + 𝑎𝑎12)/2,�𝑋𝑋 + 3(𝑞𝑞22 + 𝑎𝑎22)/2,�𝑋𝑋 + 3(𝑞𝑞32 + 𝑎𝑎32)/2� . (5a) 

Here, 

𝑋𝑋 = 1
3
− 2𝜔𝜔1𝜔𝜔2𝜔𝜔3 −

1
2

(𝑎𝑎2𝑎𝑎3𝑞𝑞1 + 𝑎𝑎3𝑎𝑎1𝑞𝑞2 + 𝑎𝑎1𝑎𝑎2𝑞𝑞3 − 𝑞𝑞1𝑞𝑞2𝑞𝑞3) . (5b) 

Based on the trace relation, 

 3𝑇𝑇𝑇𝑇(𝜌𝜌Ξ2) − 2𝑇𝑇𝑇𝑇(𝜌𝜌Ξ3) = ∑ 𝑣𝑣𝑖𝑖23
𝑖𝑖=1 ≤ 1 . (5c) 

The vectors 𝑢𝑢�⃗  and �⃗�𝑣 represents the second and third density matrix invariants of a 
qutrit. The bounds on the vector-norms are, in general, ∑ 𝑢𝑢𝑖𝑖2 ≤ 13

𝑖𝑖=1  and 
∑ 𝑣𝑣𝑖𝑖2 ≤ 13
𝑖𝑖=1 , with equality signs holding for a pure state.  

For a pure state, the nine density matrix parameters are related via the following 
five relations. 

 

1 relation 𝑇𝑇𝑇𝑇(𝜌𝜌Ξ) = 𝜔𝜔1 + 𝜔𝜔2 + 3 = 1 , (6a) 

 

3 relations 

 1
4
�
𝑞𝑞12 + 𝑎𝑎12

𝑞𝑞22 + 𝑎𝑎22

𝑞𝑞32 + 𝑎𝑎32
� = �

𝜔𝜔2𝜔𝜔3
𝜔𝜔3𝜔𝜔1
𝜔𝜔1𝜔𝜔2

� , (6b) 

1 relation 

 𝑎𝑎2𝑎𝑎3𝑞𝑞1 + 𝑎𝑎3𝑎𝑎1𝑞𝑞2 + 𝑎𝑎1𝑎𝑎2𝑞𝑞3 − 𝑞𝑞1𝑞𝑞2𝑞𝑞3 = 8𝜔𝜔1𝜔𝜔2𝜔𝜔3 . (6c) 
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So, finally, we have only four independent parameters, which is the correct number 
of independent degrees of freedom for a pure qutrit state.  

3. Time-Dependent Eigenvectors of the Qutrit Cascade or 
𝚵𝚵-Model 

The isolated qutrit states with their energies are taken to be |0 > (𝐸𝐸0), |1 > (𝐸𝐸1), 
and |2 > (𝐸𝐸2) with 𝐸𝐸2 > 𝐸𝐸1 > 𝐸𝐸0 average energy 𝐸𝐸� = (𝐸𝐸0 + 𝐸𝐸1 + 𝐸𝐸2)/3. Define 
𝜀𝜀1 = (−2𝐸𝐸0 + 𝐸𝐸1 + 𝐸𝐸2)/3, and 𝜀𝜀2 = (−𝐸𝐸0 − 𝐸𝐸1 + 2𝐸𝐸2)/3, then the starting 
energies are related with them as 

 𝐸𝐸0 = 𝐸𝐸� − 𝜀𝜀1 ,  (7a) 

 𝐸𝐸1 = 𝐸𝐸� − (𝜀𝜀2 − 𝜀𝜀1) = 𝐸𝐸� − 𝜀𝜀, (7b) 

 𝐸𝐸2 = 𝐸𝐸� + 𝜀𝜀2 . (7c) 

Here 𝜀𝜀 = 𝜀𝜀2 − 𝜀𝜀1 = (𝐸𝐸0 + 𝐸𝐸2 − 2𝐸𝐸1)/3 > 0 has been assumed for later analysis 
(𝜀𝜀 < 0 case is similar). After taking the zero of energy at 𝐸𝐸�, the Hamiltonian of the 
qutrit in an external field is given by 

 𝐻𝐻 = �
−𝜀𝜀1 (𝑔𝑔1 − 𝑖𝑖𝑔𝑔2)𝜙𝜙 (𝑔𝑔3 − 𝑖𝑖𝑔𝑔4)𝜙𝜙

(𝑔𝑔1 + 𝑖𝑖𝑔𝑔2)𝜙𝜙 −𝜀𝜀 (𝑔𝑔5 − 𝑖𝑖𝑔𝑔6)𝜙𝜙
(𝑔𝑔3 + 𝑖𝑖𝑔𝑔4)𝜙𝜙 (𝑔𝑔5 + 𝑖𝑖𝑔𝑔6)𝜙𝜙 𝜀𝜀2

� . (8) 

We specialize to the equidistant level Ξ-model in which, (i) 𝜀𝜀2 = 𝜀𝜀1, (ii) couplings 
are equal, in other words, 𝑔𝑔1 = 𝑔𝑔3 = 𝑔𝑔5,𝑔𝑔2 = 𝑔𝑔4 = 𝑔𝑔6, and (iii) there is no 
coupling between first and third levels. Then the Hamiltonian becomes 

 𝐻𝐻Ξ = �𝜙𝜙
−𝜀𝜀1 𝜙𝜙(𝑔𝑔1 − 𝑖𝑖𝑔𝑔2) 0

(𝑔𝑔1 + 𝑖𝑖𝑔𝑔2) 0 𝜙𝜙(𝑔𝑔1 − 𝑖𝑖𝑔𝑔2)
0 𝜙𝜙(𝑔𝑔1 + 𝑖𝑖𝑔𝑔2) 𝜀𝜀1

� . (9) 

Let 

 𝑔𝑔1 + 𝑖𝑖𝑔𝑔2 = 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 , (10a) 

 𝜔𝜔 = �𝜀𝜀12 + 2𝜙𝜙2𝐺𝐺2, (10b) 

 𝜀𝜀1 = 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 , (10c) 

 𝜙𝜙𝐺𝐺√2 = 𝜔𝜔𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔 . (10d) 
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Then we get 

 𝐻𝐻Ξ = 𝜔𝜔

⎣
⎢
⎢
⎢
⎡
1
√2

−𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝐺𝐺−𝑖𝑖𝑖𝑖 0

𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝐺𝐺𝑖𝑖𝑖𝑖 0 1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝐺𝐺−𝑖𝑖𝑖𝑖

0 1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝐺𝐺𝑖𝑖𝑖𝑖 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 ⎦

⎥
⎥
⎥
⎤
 . (11) 

The stationary eigenvectors for eigenvalues (−𝜔𝜔, 0,𝜔𝜔) of 𝐻𝐻Ξ are found 
respectively as  

|0 >=

⎝

⎜
⎛
𝐺𝐺−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔2 𝜃𝜃

2

− 1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔

𝐺𝐺𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔2 𝜃𝜃
2 ⎠

⎟
⎞

 , |1 >= �

1
√2
𝐺𝐺−𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔
𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔

− 1
√2
𝐺𝐺𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔

� , |2 >=

⎝

⎜
⎛
𝐺𝐺−𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔2 𝜃𝜃

2
1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔

𝐺𝐺𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔2 𝜃𝜃
2 ⎠

⎟
⎞

. (12) 

The time-dependent Schrödinger’s equation for the 𝛯𝛯-model is given as 

 𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕
�

|Ψ0(𝑡𝑡) >
|Ψ1(𝑡𝑡) >
|Ψ2(𝑡𝑡) >

� = 𝐻𝐻Ξ �
|Ψ0(𝑡𝑡) >
|Ψ1(𝑡𝑡) >
|Ψ2(𝑡𝑡) >

� . (13) 

As before, the interacting field 𝜙𝜙 is time-independent and the initial conditions are: 
(i) |𝜓𝜓0(𝑡𝑡 = 0)> = 1, and (ii) |𝜓𝜓1(𝑡𝑡 = 0)> = 0 = |𝜓𝜓2(𝑡𝑡 = 0)>. The solutions for the 
time-dependent eigenvectors are 

�
|Ψ0(𝑡𝑡) >
|Ψ1(𝑡𝑡) >
|Ψ2(𝑡𝑡) >

�  =  𝜔𝜔𝜔𝜔𝜔𝜔2 𝜃𝜃
2
𝐺𝐺𝑖𝑖(𝜔𝜔𝜕𝜕+𝑖𝑖)|0 > + 1

√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝐺𝐺𝑖𝑖𝑖𝑖|1 > +𝜔𝜔𝑖𝑖𝜔𝜔2 𝜃𝜃

2
𝐺𝐺−𝑖𝑖(𝜔𝜔𝜕𝜕−𝑖𝑖)|2 >.  (14) 

They can be rewritten as 

�
|Ψ0(𝑡𝑡) >
|Ψ1(𝑡𝑡) >
|Ψ2(𝑡𝑡) >

� =

⎝

⎜
⎛
�1 − 1

2
𝜔𝜔𝑖𝑖𝜔𝜔2𝜔𝜔� 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡 + 1

2
𝜔𝜔𝑖𝑖𝜔𝜔2𝜔𝜔 + 𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝑡𝑡𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔

1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔[𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(1 − 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡) − 𝑖𝑖𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝑡𝑡]𝐺𝐺𝑖𝑖𝑖𝑖

− 1
2
𝜔𝜔𝑖𝑖𝜔𝜔2𝜔𝜔(1 − 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡)𝐺𝐺2𝑖𝑖𝑖𝑖 ⎠

⎟
⎞

 . (15) 

4. IVR of a Qutrit: 𝚵𝚵-Model 

The density matrix of the qutrit cascade or Ξ-model is calculated as 

 𝜌𝜌Ξ = �
|Ψ0(𝑡𝑡) >
|Ψ1(𝑡𝑡) >
|Ψ2(𝑡𝑡) >

� (< Ψ0(𝑡𝑡)| < Ψ1(𝑡𝑡)| < Ψ2(𝑡𝑡)|) . (16) 
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We express the resulting density matrix as the spin-1 representation given earlier. 
Then for the qutrit Ξ-model, the following are the expressions for the density matrix 
parameters. 

 𝜔𝜔1 = 1
4

(3 + 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔𝑡𝑡 , (17a) 

 𝜔𝜔2 = 1
4

(3 + 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝑖𝑖𝜔𝜔2𝜔𝜔𝑡𝑡 , (17b) 

 𝜔𝜔3 = 1
4

(1 − 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔) , (17c) 

�
𝑞𝑞1
𝑎𝑎1� = 𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃

2√2
(1 − 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)(1 − 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡) �𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(1 − 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡) � 𝜔𝜔𝜔𝜔𝜔𝜔𝑐𝑐−𝜔𝜔𝑖𝑖𝜔𝜔𝑐𝑐� − 𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝑡𝑡 �𝜔𝜔𝑖𝑖𝜔𝜔𝑐𝑐𝜔𝜔𝜔𝜔𝜔𝜔𝑐𝑐�� , (17d) 

 
�
𝑞𝑞2
𝑎𝑎2� = 1−𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃

8
(1 − 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡) �−{(1 − 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔) + (3 + 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡}�𝜔𝜔𝜔𝜔𝜔𝜔2𝑐𝑐

𝜔𝜔𝑖𝑖𝜔𝜔2𝑐𝑐� +

4𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝑡𝑡 �−𝜔𝜔𝑖𝑖𝜔𝜔2𝑐𝑐
𝜔𝜔𝜔𝜔𝜔𝜔2𝑐𝑐 �� , 

   (17e) 

 

�
𝑞𝑞3
𝑎𝑎3� =

𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔
4√2

𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔[−(5 + 3𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔) + 4(1 + 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝑡𝑡

+ (1 − 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔𝑡𝑡] � 𝜔𝜔𝜔𝜔𝜔𝜔𝑐𝑐−𝜔𝜔𝑖𝑖𝜔𝜔𝑐𝑐�

+ [2(3 + 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔𝑡𝑡 + (1 − 𝜔𝜔𝜔𝜔𝜔𝜔2𝜔𝜔)𝜔𝜔𝑖𝑖𝜔𝜔2𝜔𝜔𝑡𝑡] �𝜔𝜔𝑖𝑖𝜔𝜔𝑐𝑐𝜔𝜔𝜔𝜔𝜔𝜔𝑐𝑐� . 

(17f) 

Due to the structure of the Ξ-model, there are only two independent parameters 
(𝜔𝜔, 𝜔𝜔). Using the earlier expressions, the IVR vectors for Ξ-model are found to be 

1) First-order invariant vector ( 𝑤𝑤��⃗ = �√𝜔𝜔1, √𝜔𝜔2, �𝜔𝜔3�):  

The angles in spherical representation are:  

Colatitude angle or the angle between the IVR vector and z-axis 

 𝜓𝜓1 = 𝜔𝜔𝜔𝜔𝜔𝜔−1��𝜔𝜔3� = 𝜔𝜔𝜔𝜔𝜔𝜔−1 � 1
√2
𝜔𝜔𝑖𝑖𝜔𝜔𝜔𝜔� . (18a) 

It is time-independent. 

Azimuthal angle or the angle between projection of IVR on XY-plane and the 
x-axis 

 𝜒𝜒1 = 𝑡𝑡𝑎𝑎𝜔𝜔−1�
𝜔𝜔2
𝜔𝜔1

= 𝜔𝜔𝑡𝑡 (modulo 2𝜋𝜋) . (18b) 

It has linear time-dependence. 

2) Second-order invariant vector (𝑢𝑢�⃗ = ��𝜔𝜔12 + 2𝜔𝜔2𝜔𝜔3, �𝜔𝜔22 + 2𝜔𝜔3𝜔𝜔1, �𝜔𝜔32 + 2𝜔𝜔1𝜔𝜔2�):  

The IVR angles for 𝑢𝑢�⃗ (𝜓𝜓2,𝜒𝜒2) are: 



 

6 

Colatitude angle or the angle between the IVR vector and Z-axis: 

 𝜓𝜓2 = 𝜔𝜔𝜔𝜔𝜔𝜔−1�𝜔𝜔32 + 2𝜔𝜔1𝜔𝜔2  , (19a) 

Azimuthal angle or the angle between projection of IVR on XY-plane and the 
X-axis 

 𝜒𝜒2 = 𝑡𝑡𝑎𝑎𝜔𝜔−1�𝜔𝜔2
2+2𝜔𝜔3𝜔𝜔1

𝜔𝜔1
2+2𝜔𝜔2𝜔𝜔3

 . (19b) 

We calculate and plot (𝜓𝜓2, 𝜔𝜔𝑡𝑡) and (𝜒𝜒2, 𝜔𝜔𝑡𝑡) for values of 𝜔𝜔 = 3.0 radians and 
5.0 radians as shown in Figs. 1–4. 

 

Fig. 1 Colatitude angle of the second-order invariant vector u as a function of 𝝎𝝎𝝎𝝎 for 𝜽𝜽 = 3 
radians 

 

Fig. 2 Colatitude angle of the second-order invariant vector u as a function of 𝝎𝝎𝝎𝝎 for 𝜽𝜽 = 5 
radians 
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Fig. 3 Azimuthal angle of the second-order invariant vector u as a function of 𝝎𝝎𝝎𝝎 for 𝜽𝜽 = 3 
radians 

 

Fig. 4 Azimuthal angle of the second-order invariant vector u as a function of 𝝎𝝎𝝎𝝎 for 𝜽𝜽 = 5 
radians 

These angles show sinusoidal-like variations of the spherical angles of IVR vectors 
for two widely varying values of undressed energy given by 𝜀𝜀1 = 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔. It is 
conjectured that similar behavior will also be present in the 𝑢𝑢�⃗ (𝜓𝜓2,𝜒𝜒2) of qutrit Λ 
and V models.    

3) Third-order invariant vector: �⃗�𝑣 = ��1
3

, �1
3

, �1
3
� . 

The third-order vector turns out to be a constant one, for the Ξ-model and angles 
are 

 𝜓𝜓3 = 𝜔𝜔𝜔𝜔𝜔𝜔−1�1
3
≅ 550 , (20a) 

 𝜒𝜒3 = 𝑡𝑡𝑎𝑎𝜔𝜔−1(1) = 450 . (20b) 
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It is conjectured that the third invariant vector is always constant and has the angles 
given previously for pure qutrit state. The spherical angles associated with the other 
two vectors, 𝑤𝑤��⃗ (𝜓𝜓1,𝜒𝜒1) and 𝑢𝑢�⃗ (𝜓𝜓2, 𝜒𝜒2), capture the time-dependent dynamic essence 
of this model.  

5. Conclusion and Next Steps 

The 3-D IVR vectors representing qutrit states captured the essential dynamics of 
the cascade or Ξ-model. The model qutrit state is pure, and so has fewer degrees of 
freedom. Out of three vectors, only one was found to display complex behavior. 
Out of the remaining two vectors, one is a constant and another has a linearly time-
dependent azimuthal angle.  

On the other hand, the IVR is capable of displaying the full static or dynamic 
behavior of a mixed qutrit state with all 8 degrees of freedom as well. In that 
situation, the qutrit dynamics are expressed by the behavior of three parameters 
each of 𝑢𝑢�⃗  and �⃗�𝑣 and two parameters of 𝑤𝑤��⃗  as it has unit length by definition. This is 
a significant advance compared with the traditional approach based on Gell-Mann 
special unitary group of order 3 [SU(3)] matrices. The IVR will be applied in the 
future to study the relative performance of different qutrit models for quantum 
sensing.  
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